
Logistic Regression Models for Discrete Time Hazards



Previously . . .

We saw that, under the assumptions of conditionally independent and
non-informative censoring, the (partial) likelihood expression becomes

L(θ) =
n∏

i=1

∞∏
s=1

P(Y (s)|HY (s)) =
Ci∏

s=1
hi(s; θ)Yi (s)(1− hi(s; θ))1−Yi (s).

Here hi(s; θ) is some parametric model for the hazard!



This looks familiar . . .

This is a binomial likelihood with probabilities given by hi(s; θ).



Discrete Time Survival Data with GLMs



Basic Model

Suppose that Dj is a categorical time period variable, then we can
take

logit {h(s;α)} = α1D1 + α2D2 + · · ·+ αCi DCi .

This can be fit using logistic regression.



Fitting the Model

Suppose that my_df contains the relevant data in person-period
format.

glm(Y ~ -1 + factor(time),
family = binomial,
data = my_df)



Inference and Confidence

I This technique allows standard GLM inference.

I We can get h(t) = expit(αt), with corresponding confidence intervals.
I Can test for equality of hazards, for instance,

H0 : αt = αt+1 =⇒ H0 : h(t) = h(t + 1).

I This is a maximum likelihood estimator, allowing for MLE-type inference.
I Gives survivor function through

S(t) =
t∏

j=1
{1− h(j)} .
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Survivor Function Inference



Confidence Intervals

In general we need to use the multivariate delta method to get confidence intervals
for the survivor function.

This is based on intervals around the log-transform.

var
{

log Ŝ(t)
}
≈ G var (α̂) G ′,

which is estimated as
v̂ar
{

log Ŝ(t)
}
≈ Ĝ v̂ar (α̂) Ĝ ′.



Confidence Intervals (Cont.)

In this case, we estimate var (α̂) using the GLM fit.

We estimate G , as

Ĝ =



−ĥ(1) 0 0 · · · 0
−ĥ(1) −ĥ(2) 0 · · · 0
−ĥ(1) −ĥ(2) −ĥ(3) · · · 0

...
...

... . . . ...
−ĥ(1) −ĥ(2) −ĥ(3) · · · −ĥ(C)


.
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Combining these Results

A confidence interval for Ŝ(j) is then given by,

exp
(

log
{
Ŝ(j)

}
± Zα/2 ×

√
v̂ar

{
log Ŝ(t)

}
(j ,j)

)
.



The Proportional Odds Model



What if we want the hazard to differ based on covariates?



Extending the Logistic Regression

Suppose that we fit

logit {h(s;α)} = α1D1 + α2D2 + · · ·+ αCi DCi + X ′i β.

Here we let all relevent covariates be contained in Xi .



The Proportional Odds Assumption

Consider if Xi = Sexi , giving the model

logit {h(s;α)} = α1D1 + α2D2 + · · ·+ αCi DCi + βSexi .

For every time we would find that logit {h(s;α,F)} − logit {h(s;α,M)} = β, and so
the odds ratio is given by exp(β).

We call this the proportional odds model since the odds differ by
a constant, multiplicative constant. That is, they are

proportional.
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Testing the Proportional Odds Assumption

We can test the validity of the proportional odds assumption by fitting

logit {h(s;α)} = α1D1 +α2D2 + · · ·+αCi DCi + β1Sexi + β2SexiD2 + · · ·+ βCi DCiSexi .

Then we test
H0 : β2 = β3 = · · · = βCi = 0,

using a simple nested likelihood ratio test.
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Summary

I The partial likelihood for discrete time survival analysis admits a binomial
representation.

I We can use logistic regression to estimate the hazards based on a factor variable
for time.

I The survivor function is estimable through the cumulative product.
I Standard inference exists for the hazard function and we can use the

multivariate delta for the survivor function.
I Can add in variates making the proportional odds assumption, which can be

tested using deviance tests.
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